Automatic correction of gaps in cerebrovascular segmentations extracted from 3D time-of-flight MRA datasets.

نویسندگان

  • N D Forkert
  • A Schmidt-Richberg
  • J Fiehler
  • T Illies
  • D Möller
  • H Handels
  • D Säring
چکیده

OBJECTIVES Exact cerebrovascular segmentations are required for several applications in today's clinical routine. A major drawback of typical automatic segmentation methods is the occurrence of gaps within the segmentation. These gaps are typically located at small vessel structures exhibiting low intensities. Manual correction is very time-consuming and not suitable in clinical practice. This work presents a post-processing method for the automatic detection and closing of gaps in cerebrovascular segmentations. METHODS In this approach, the 3D centerline is calculated from an available vessel segmentation, which enables the detection of corresponding vessel endpoints. These endpoints are then used to detect possible connections to other 3D centerline voxels with a graph-based approach. After consistency check, reasonable detected paths are expanded to the vessel boundaries using a level set approach and combined with the initial segmentation. RESULTS For evaluation purposes, 100 gaps were artificially inserted at non-branching vessels and bifurcations in manual cerebrovascular segmentations derived from ten Time-of-Flight magnetic resonance angiography datasets. The results show that the presented method is capable of detecting 82% of the non-branching vessel gaps and 84% of the bifurcation gaps. The level set segmentation expands the detected connections with 0.42 mm accuracy compared to the initial segmentations. A further evaluation based on 10 real automatic segmentations from the same datasets shows that the proposed method detects 35 additional connections in average per dataset, whereas 92.7% were rated as correct by a medical expert. CONCLUSION The presented approach can considerably improve the accuracy of cerebrovascular segmentations and of following analysis outcomes.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Prior-Based Automatic Segmentation of the Carotid Artery Lumen in TOF MRA (PASCAL)

In current clinical practice, examinations of the carotid artery bifurcation are commonly carried out with Computed Tomography Angiography (CTA) or contrast-enhanced Magnetic Resonance Angiography (ceMRA). Quantitative information about vessel morphology, extracted from segmentations, is promising for diagnosis of vessel pathologies. However, both above-mentioned techniques require the administ...

متن کامل

Fully Automatic Skull-Stripping in 3D Time-of-Flight MRA Image Sequences

In this paper we present a robust skull-stripping method for the isolation of cerebral tissue in 3D Time-of-Flight (TOF) magnetic resonance angiographic images of the brain. 3D TOF images are often acquired in case of cerebral vascular diseases, because of their good blood-to-background-contrast. Skull-stripping is an essential preprocessing step towards a better segmentation as well as direct ...

متن کامل

Statistical-Based Approach for Extracting 3D Blood Vessels from TOF-MRA Data

In this paper we present an automatic statistical intensity basedapproach for extracting the 3D cerebrovascular system from time-of-flight (TOF) magnetic resonance angiography (MRA) data. The voxels of the dataset are classified as either background tissues, which are modeled by a finite mixture of one Rayleigh and two normal distributions, or blood vessels, which are modeled by one normal dist...

متن کامل

Statistical-Based Approach for Extracting 3D Blood Vessels from TOF-MyRA Data

In this paper we present an automatic statistical intensity basedapproach for extracting the 3D cerebrovascular system from time-of-flight (TOF) magnetic resonance angiography (MRA) data. The voxels of the dataset are classified as either background tissues, which are modeled by a finite mixture of one Rayleigh and two normal distributions, or blood vessels, which are modeled by one normal dist...

متن کامل

Fuzzy-Based Extraction of Vascular Structures from Time-of-Flight MR Images

In this paper an automatic fuzzy based method for the extraction of the cerebrovascular system from 3D Time-of-Flight (TOF) MRA image sequences is presented. In order to exclude non-brain tissue an automatic skull stripping method is applied in a preprocessing step. Based on the TOF images vesselness and maximum parameter images are computed first. These parameter images are then combined with ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Methods of information in medicine

دوره 51 5  شماره 

صفحات  -

تاریخ انتشار 2012